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Abstract

This paper aims to provide limited knowledge awareness to a conventional DBMS (Database
Management Systems). This goal is achieved by extending an off-the-shelf DBMS (Postgresql
in our case) in such way that it becomes ontology aware. The concept of ontology is used in
our approach as a way of formalizing knowledge and relationships among objects in a domain
of interest. Our solution is compounded by two main pieces: an external knowledge server
and a set of functions to extend the DBMS. We argue that our solution is both powerful in the
sense of supporting knowledge retrieval in the queries, and generic, in the sense that it can be
deployed in any DBMS with the support for user-defined functions. Two application domains
that can benefit from our approach are data mining and ad hoc query processing in hypothesis
exploration environments (e.g. medical research). We also argue that our approach is original
in how it pushes a conventional DBMS towards having features like the ones expected from
Knowledge Base Management Systems (KBMS).

1 Introduction

Commercial relational DBMSs are tailored to efficiently support fixed format data models in what is
known as data management. Nevertheless the upcoming demands in data analysis are pushing the
technological frontiers to allow that two new other dimensions be supported by such systems: the
object management and the knowledge management. We are specially interested in the second
issue.

As defined by Stonebraker and Kemnitz [11], knowledge management entails the ability to store
“rules” (as defined in First Order Logic) that are part of the semantic of an application. These rules
allow the derivation of data that is not directly stored in the database. Later, we will see that our�Work partially supported by CNPq (grant 200.167/97-9).
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approach accomplishes the same thing by using another formalism, instead of storing rules, and we
will argue that this solution is actually much more flexible.

A number of application domains would benefit of the knowledge management capabilities,
and, therefore, a simple, powerful, and efficient mechanism to add the knowledge dimension to an
off-the-shelf DBMS can be rather useful.

Before we draw an analysis of how this was accomplished, we introduce the concept of ontology.
O’Leary [8] defines an ontology as “an explicit specification of a conceptualization”. This

knowledge-based specification typically describes a taxonomy of the relationships that defines the
knowledge. Within the context of knowledge-management systems, ontologies are “specifications
of discourse in the form of a shared vocabulary”. Informally, [3] remarks that an ontology usually
provides some help into describing facts, beliefs, hypotheses, and predictions about the world in
general, or in a limited domain, if that is what is needed.

According to [8], ontology or taxonomy issues are emerging as one of the most important
problems in knowledge management, mainly as a medium to formalize knowledge and to allow
information sharing based on a common vocabulary [5].

Therefore what used to be a problem of AI, is now becoming a much broader issue because
several application domains are making use of ontologies to add the knowledge dimension to their
tools.

Bench-Capon [2] citing an earlier research points out a couple of motivations for using ontologies
as the way of organizing information. Among them, we deem the following as the most important
ones:

1. Knowledge sharing: ultimately it would allow that a federation of knowledge bases be able to
solve problems by exchanging messages accordingly to the query.

2. Verification of a knowledge base: which is the validation of data as provided by traditional
systems.

The database community is also finding applications for the concept of ontologies, but with
a different target. One of the interesting applications is the ad hoc query generation problem in
complex domains.

Weinstein correctly points out in [15] that relational technology is suited to applications with
highly standardized data, because these applications can fit well into a design that breaks the data
into tables by normalization. On the other hand, in complex domains, normalization can produce a
plethora of tables, destroying the efficiency and maintainability.

This problem clearly comes up during the query generation. Conventionally, query generation is
done using GUI interfaces that build the query using knowledge about the underneath data description
(e.g. relations and relationships) in such a way that a SQL command is assembled and sent to the
database engine.

In most information systems, this approach is satisfactory because the queries and the query do-
main of interest being described are well defined and self-contained. Nonetheless, some applications
may need more complex ways of generating queries, specially for what we call data exploratory
tasks.

An example of an application scenario will make such issues blatant. Consider the medical
research domain. According to [9], typical medical databases have attributes with enormous name
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Figure 1: Excerpt of a product ontology. The weight of the edges represents objects originated from
a root category (in this example, beverage; cheese, and snack).

spaces. In addition to that, some attributes have semantic dependencies (ontological dependencies)
with each other and the interpretation of one attribute instance may depend on another one.

Stoffel et alli [9] describe a mechanism to overcome some of the hurdles of using conventional
DBMS just presented using two main ideas. Firstly, it stores some meta-data describing an attribute
hierarchy (represented as a DAG) that even support the creation of new derived attributes dynam-
ically. Secondly, it uses a graphical query tool which is able to explore the hierarchy and generate
complex queries like find all patients with cultures growing gram negative rods. In this query
example, the powerfulness of their approach consists in the fact that the query retrieves patients for
whom the organism is a either a “gram-negative-rod” or any of its sub-categories (according to the
hierarchy of gram-negative rods).

The main advantage of this approach is that the users (in this case the medical specialists) are
able to express more complex queries without the burden of becoming experts on the underlying
data model [10].

Stoffel et alli [10] also present the idea of semantic indexing. It consists in building ontology-
aware indices that would allow a system to retrieve data grouped by ontological concepts, essentially,
allowing efficient retrieval of tuples semantically associated.

These solutions are not generic enough, but they are a step in the right direction.
Another data exploratory task is data mining. Many of the data mining approaches generate

rules based solely on the contents of the database. Nevertheless, the utilization of some background
knowledge can supplement the discovery process and generate rules with semantical meanings,
based, for example, on aggregations over an ontology.

As an example from the classical supermarket basket scenario [1], instead of generating rules
like Coke ! Ruffles and Pepsi ! Doritos (meaning, respectively, that a customer buying
Coke would buy also Ruffles, and that a customer buying Pepsi would also buy Doritos), we would
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Figure 2: Two ontologies: A and B. A;B;C;F;G; and H are objects from ontology A, and D andE are objects from ontology B. The arcs show intra and inter-ontology relationships among objects.

generate something semantically more complex like Soda! SaltySnacks.
Taylor [12] describes the implementation of such ideas in the context of ParkaDB which is a

knowledge representation system developed by the PLUS group at the University of Maryland. Their
authors claim that this approach led to the generation of rules that provide a “clearer” synopsis of the
database. This is certainly achieved because instead of generating several potentially uninteresting
rules, the system generates rules based on concepts of higher abstractions, possibly uncovering
interesting relationships.

In the following section, we describe our approach which provides the infrastructure to support
the two application scenarios we just discussed in a generic way. This goal is achieved by extending
a conventional, off-the-shelf DBMS. We also draw some arguments pointing out that our approach
drives a DBMS towards a KBMS in terms of features. Basically, it presents to the user stronger
semantic capabilities in the query language and the possibility of storing knowledge in a very well
structured way.

2 Extending a DBMS to support ontology-aware queries

Our approach pushes a conventional DBMS towards a KBMS in terms of capabilities and hence it is
important to summarize some concepts. Formally, a knowledge-base management system (KBMS)
is a system that [13]:
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Figure 3: A sample ontology formed by two classes of objects: location (lower box) andtelecom provider (upper box).

1. Provides support for efficient access, transaction management, and all other functionalities
associated to DBMSs.

2. Provides a single, declarative language to serve the roles played by both the data manipulation
language and the host language in a DBMS.

One of the formalisms used to describe KBMS capabilities is presented in [14]. The author
tackles the general problem of representing knowledge in a database by using a data model1 named
Datalog. Key to this formalism is the concept of the extensional database (EDB) which is formed
by tuples actually stored into the database, and the concept of the intensional database (IDB) which
are basically predicates that embed some kind of knowledge about the world.

For example, considering an ontology describing beverages (like the example in figure
1) and possible relationships among instances of it, one possible powerful query to be is-
sued in an ontology-aware application would be: SELECT * FROM beverages instock
WHERE is a(bev name, ’Alcoholic’). That is, we would like to retrieve all
beverages instock tuples which satisfy the predicate is a(bev name,’Alcoholic’),
i.e., all tuples that are alcoholic products. It means that it doesn’t matter whether the product is from
the category of “wine” or “eggnog”, because both are “alcoholic” (see figure 1).

1A data model is a mathematical formalism with two parts: a notation for describing data and a set of operators to
manipulate that data [13].
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As with Datalog, our approach first defines a formalism to hold the domain knowledge, i.e.,
factual knowledge describing objects, properties, relations, classes, and subclasses, states, process,
parts, etc. And, later, we define the operators over the domain knowledge that ultimately will give
the DBMS the power of “reasoning” upon the raw data stored in its tables. In some sense, it can be
regarded as the IDB in Datalog, whereas the EDB is the database provided by Postgresql in the form
of the relational tables.

This approach is both simple and powerful. It is simple because the integration with an off-the-
shelf DBMS could be accomplished without any modification of its engine (though we would like
to, due to efficiency reasons), and powerful because it aggregates “reasoning” power to the query
answering process.

We shall see in the next subsection the way our own formalism allows Postgresql to support
ontology-aware queries turning it into something resembling a KBMS.

2.1 Formal Specification

Ontologies are defined as an abstract data type (ADT) with three data structures:

1. a set of objects O. Figure 2 depicts two ontologies A and B and, A;B;C;F;G, and H are
examples of objects that pertain to ontology A.

2. a set of named relationships (functions) N that labels mappings from one object to another
object. In its basic form it is a function defined as follows f : O!relationship name O, therefore
named relationships are always functions of arity 2.

In figure 2, we can see an example of a named relationship connecting objects A andC . In our
graph, we call this relationship of named relationship 2. Also, we can see a named relation-
ship connecting objects of different ontologies. In this case, we have named relationship 1
connecting objects C (from ontology A) and D (from ontology B).

Also, a more sophisticated kind of named relationship can also be defined. It allows an
object o1 to be connected to another object o2 and its descendents according to a named
relationship that specifies which relation holds this parenthood relationship. The name of the
relationship that represents the parenthood is necessary because it can happen that two objects
are connected more than one time by different relationships. Formally, it would be defined asf : O)(relationship name;parenthood relationship name) O.

An example of this kind of relationship can be seen in figure 2. Object D is connected to objectB, and all descendants of the latter. Semantically, it means that complex relationship 1 holds
for any pair from the set f(D;B); (D;F ); (D;G); (D;H)g.

3. an ontology graph G(V;E), where the vertices V are objects (vi 2 O, where vi is one of the
vertices in V ), and the edges E are relationships (i.e., ei 2 N , such that ei is connecting two
vertices vj and vk that have a named relationship or is a(vj) and is a(vk) lead to objects om
and on that have a named relationship 2. In figure 2, we show two subgraphs (one for ontology
A and the other for ontology B).

2is a(X) returns the hierarchy of types for a given object.
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The ontology ADT is also formed by two category of methods:

1. the named relationship which allows one to evaluate whether relationship name(oi; oj) orrelationship name(is a(oi); is a(oj)) is valid, basically by looking it up in G, i.e., find an
edge that is an instance of the named relationship you are looking for. We can think of named
relationships as predicates as defined in the First Order Logic, in the sense that they return
either true or false.

Figure 2 shows generic examples of four named relationships: named relationship 1,named relationship 2, complex relationship 1, and complex relationship 2. Figure 3
depicts a possible real-world example, with named relationships like hosts that interconnects
two objects of the category location, provides long distance which connects two objects
of the category telecom provider, and provides local which connects pairs of the category(location; telecom provider).

2. the named inference path, which allows one to evaluate a complex (multiple-edge) relation-
ships, by describing a path (a concatenation of edges) of named relationships to be found in the
graph G. In summary, it defines a path description to be found by a graph traversal algorithm.
Named inference paths are also regarded as predicates, and therefore their evaluation can be
either true or false.

Figure 4 shows a possible inference path for the knowledge base depicted in figure
3. provides long distance defines a path of length 2 that connects an object fromtelecom provider to another one from location. In order to satisfy this inference path, the
following pattern has to be found: telecom provider connecting to another telecom provider
by a relationship provides long distance which is also connected to an object location by
a named relationship provides local (if the named relationship is a complex one, the parent-
hood relationship is hosts). Notice that here we are allowing the overloading of the nameprovides long distance. The name clash is resolved by the type of the parameters (the named
relationship provides long distance connects two objects of the category telecom provider
and the inference path connects a pair of (location; telecom provider).

The approach just described shares some commonalities with the concept of semantic networks3

developed in the context of Artificial Intelligence. Nonetheless, our formalism constraints the way
the graph structure can be explored to perform reasoning efficiently, because the DB administrator is
supposed to define himself/herself the named inference paths that make sense in his/her application,
restricting the way “reasoning” can be done.

3 Implementation

Traditional relational DBMSs support a data model consisting of a collection of named relations
(formed by typed attributes). Postgres is a DBMS that extends this paradigm by allowing the

3In AI, a semantic network is a graph structure that encode taxonomic knowledge of objects and properties. In this
domain, nodes can be either taxonomic categories, properties, or object constants. The arcs can be either subset arcs
(denoting isa links), or set membership arcs (instance links).
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Figure 4: provides long distance(location; telecom provider) is an example of an named infer-
ence path. An it is evaluated by searching a path that connects an instance of an object location
to an instance of an object telecom provider, by finding the two intermediate named relation-
ships provides long distance and provides local. Since provides local can also be a complex
relationship, we are specifying that the parenthood relationship is hosts.

definition of new classes, types, and functions [11]. Its implementation started as a research program
in 1986. Currently, Postgres has become an open-source piece of software renamed to Postgresql
and supported by a number of developers over the Internet.

Our implementation basically consisted of extensions to Postgresql to provide new functions,
and, through these, inference mechanisms. Both are implemented by interactions between the
back-end engine with an ontology server, also developed in the context of this present work.

In this first approach, we are providing a basic interface of new function calls that can be used
in conventional SQL commands. These functions are exactly the access methods of interaction with
the ontologies stored in the ontology server: the named relationships and the named inference paths.

These functions (access methods) interact with the ontology server by a mechanism of dynamic
linking. The ontology server is the autonomous module in charge of storing the data structures
mentioned in the previous section and also of implementing the access methods.

Currently the functions are built tailored to the ontologies we have currently stored in the ontology
server. But we intend to provided a generic interface so the user can define ontologies using the
conventional relational data model and external information. And then, from these two pieces of
data, the methods to handle the ontology will be automatically constructed. Therefore, it will be
possible to avoid the burden of using a programming language to describe the ontology, and what is
even worse, integrated a newly built ontology to a universe of the already existing ontologies.

The access methods are implemented as graph traversal routines. And they can be used either as
a the name of the column to be projected or as part of a condition in an arbitrary query. For example:

SELECT beverage_name, is_a(beverage_name,’Alcoholic’)
FROM beverage_database;

or



www.manaraa.com

SELECT beverage_name
FROM beverage_databases
WHERE is_a(beverage_name,’Alcoholic’);

In the above example, is a(beverage name,’Alcoholic’) should be read asis a(beverage name) ==0 Alcoholic0. Therefore, in order to evaluate the predicate is a, the graph
depicted in 1 must be traversed until it can be verified whether a path connecting beverage name
and Alcoholic exists or not. This task is accomplished by the ontology server and a boolean result
is returned. It should be noticed that the path can be potentially very long, depending on how deep
and complicated the ontology is.

Another possibility is the utilization of the functions to aggregate or order the tuples, like in:

SELECT name,is_a(name,’Soda’)
FROM instock
ORDER BY is_a(name,’Soda’);

4 Using the improved Postgresql

In the last section, we have described some utilization of ontologies, although they are rather trivial,
they already start to show a whole new set of capabilities in query answering that the users can make
use of.

The utilization of the inference path function calls gives the power of limited “reasoning” over
the database. An example of a query using the named inference path in the context of our telecom
provider (figure 3) would be:

SELECT customer_name, customer_address, telecom_provider_name,
FROM customers, telecom_providers
WHERE customer_name=’John Doe’ AND

provides_long_distance(customer_city,telecom_provider_name);

In this case something much more complex than the information already in the database
is being deduced using a function call that invokes the named inference method function
(provides long distance), and tries to find a path in the ontology graph.

A Cartesian product is executed using the tables customers and telecom providers
and then the expression is evaluated to check if the tuples satisfy it. The evaluation of
provides long distance(customer city,telecom provider name) requires that
the ontology server find a path in the graph of figure 3 that connects the customer to a long distance
carrier provider. For example, let’s suppose that John Doe lives in College Park. College Park is
connected to Bell Atlantic by a provides local named relationship, and Bell Atlantic is connected to
MCI by a provides long distance named relationship. Therefore, MCI is returned as an answer to
the query. By the same reasoning, so are LCI and AT&T. This latter one because of the local service
to College Park offered by Jones Communications. Thus, the output obtained from Postgresql is:
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customer_name telecom_name
--------------------------------
John Doe MCI
John Doe LCI
John Doe AT&T

Nevertheless, even more interesting utilization can be implemented using the libpq interface4.
The implementation of complex data mining or hypothesis testing queries can be easily achieved
and so we can, for example, implement the algorithms like the ones described in [12] or [9].

Another intriguing possibility is the extension of the work of Meo et alli [7] and implementing
the MINE RULE operator in an ontology-aware fashion such as the example bellow suggests:

MINE RULE SimpleAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD, SUPPORT, CONFIDENCE
FROM Purchase
WHERE price<=15 AND (is\_a(BODY,’Soda’) AND is\_a(HEAD,’Chips’)),
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

The original implementation mentioned in Meo’s paper was concerned with retrieving purchases
of items that cost more that $15 into a temporary table SimpleAssociations. Each tuple corresponds
to a discovered rule. The SELECT clauses defines the structure of the rule: the body is a set of
itemswhose cardinality is any positive integer, and the head is defined as set containing one single
item. Our contribution here is to allow rules to be grouped into a higher ontological category, in this
case Soda and Chips, instead of particular instantiations of these categories.

As just showed here, the same approach could be used for the other categories of data mining
summarized in Meo’s paper.

4.1 Limitations and Future Work

Our implementation is fully functional and the ontology server was deployed as an external plug-in
to Postgresql. Nonetheless, we foresee a design where the ontology itself can be stored into carefully
crafted relations, and the methods can be implemented using the libpq interface to perform the
graph traversal operations over the relations. This implementation would make the whole system
integrated. Postgresql currently does not allow us to use this alternative though, because its parser is
not reentrant. We are working to overcome this limitation by a couple of modification in its source
code.

As already mentioned, one scenario that would benefit from our infrastructure is the hypothesis
testing environment. Thus, a very useful improvement would be the deployment of a graphical
interface to generate ontology-aware queries. This would make possible to generate high level
queries like the ones presented in [12].

One limitation of our approach is due to the fact that currently there is no interaction between the
ontology server and Postgresql’s optimizer. Therefore, the optimizer is blind when computing the

4The libpq [4] interface allows the development of applications that interacts with the DBMS by calling functions
that send SQL commands to the back-end, and get the results back.
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cost of either named relationship or inference path is concerned. Moreover, because the ontology
server assumes no locality in running its methods, a lot of computation can be wasted. To make this
example clear, let’s analyze the following query:

SELECT customer_name, customer_address, telecom_provider_name,
FROM customers, telecom_providers
WHERE provides_long_distance(customer_city,telecom_provider_name);

This query executes a Cartesian product and, depending on the database contents, the inference
path provides long distance(0CollegePark0;0 BellAtlantic0) will be computed multiple times. As
pointed out, the computation of such a method is actually implemented as a graph traversal and
can be pretty expensive. Nevertheless, because this problem can show up frequently, the ontology
server could implement a caching mechanism, and hence avoid the re-computation of things already
known. In fact, caching can be pretty beneficial due to the fact that the knowledge stored in the
ontology server tends to be fairly constant over time.

Another improvement to be implemented is the development of indexing methods to improve the
performance of the graph traversal routines, by borrowing the paradigm followed by the Generalized
Search Tree [6].

Finally, we can state that our ultimate goal is the deployment of the ontological knowledge as
the data model for the data management system. In some sense, a given data model in the relational
model is already a subset of an ontology for some domain. In effect, Chandrasekaran points out
in [3] that databases built using the simple ontology cannot make simple inferences that one would
expect to be able to make given a knowledge base and our proposal will overcome this barrier in the
same way our current work does, i. e., making the ontology the formalism for describing the data
model would give all the power that our solution provides, plus the benefits of being completely
integrated into the database engine, and therefore allowing a perfect interaction with the indexing
and optimizing subsystems.

5 Conclusion

The greatest advantage of our approach is the utilization of conventional off-the-shelf DBMS. And
hence the possibility that it can be used with legacy systems without introducing the burden of the
implementation of new architecture with a whole new design-implement-test cycle.

In effect, the knowledge dimension can be aggregated only to portions of the database that will
benefit from it. For example, in a supermarket management database infrastructure, an ontology
tailored to the sale transactions could help identify high level rules like the ones described in section
1 without disrupting the database that deals with stock management. Likewise in a medical center,
only the databases of the information systems related to managing clinical data would be modified
to help a pathologist to find a set of rules that defines the pattern of efficiency of a given antibiotic
against a family of bacteria.

Despite the gains of our approach, we still can have higher improvements if we extend the
DBMS to have the ontology as its language to describe the data model in the way described in the
last section. And then obtaining a true, full-fledged KBMS with the needed efficiency and power of
expression.
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